
High Performance Pattern Matching using
Bloom–Bloomier Filter

Nguyen Duy Anh Tuan, Bui Trung Hieu, Tran Ngoc Thinh

Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam

Abstract-In this paper, we propose a high performance archi-
tecture based on the combination of Bloom Filter and Bloomier
Filter (BBF) to enhance the speed of pattern matching process on
Clam Antivirus (ClamAV) database. BBF maintains small on-chip
memory, low number of fault positives and can indicate which
patterns are the candidate matches. The implementation results
on low-cost Altera Cyclone II show that our architecture can
handle 43,491-characters of ClamAV pattern set with only 9.5 bits
per character and achieve a throughput of 1 gigabit per second
(Gbps). As compared with previous systems, our memory utiliza-
tion is far better up to 73%.

I. INTRODUCTION

Nowadays, along with the development of internet, informa-
tion security is becoming more and more critical. One of the
most important aspects in this field is antivirus. Although there
are many improvements in antivirus programs, they still have
to match a file stream with static patterns of known viruses.
This process occupies a noticeable amount of resource and
slows down entire system due to the growing number of virus-
es. In addition, software-based solution can not catch up with
the gigabit networks.

This limitation leads to a demand of hardware solution to
speed up this process. FPGA-based system is one of popular
hardware technologies because of its high speed operation and
flexibility in changing application. There are many FPGA-
based solutions have been developed in this field, but those
systems [2, 3, 4, 5] need quite large on-chip memory to operate
(14.1 – 34.6 bits per character) or consume lots of logic ele-
ments [6], up to 1.12 logic elements per character. Our Bloom-
Bloomier Filter (BBF) is a flexible, storage-efficient FPGA-
based system that boosts the speed of pattern matching. The
BBF relies on hash-based Bloom Filter and Bloomier Filter
algorithm, thus the usage of logic element (currently 0.27 logic
elements per character) is independent of the quantity of im-
plemented patterns. We use up to ten hash functions to de-
crease the false positive probability as well as the off-chip
memory access rate. The on-chip memory density of BBF is

only 9.5 bits per character not as much as previous systems of
which on-chip memory density are 14.1 to 34.6 bits per charac-
ter.

This paper is organized into 5 sections. ClamAV Database,
Bloom Filter and Bloomier Filter are introduced in Section 2.
Section 3 describes the combination of Bloom and Bloomier
Filter as well as the architecture of BBF system. Synthesis and
simulation results are presented in Section 4. Finally, conclu-
sions and future work are given in Section 5.

II. BACKGROUND

A. Clam Antivirus Database
Clam Antivirus (ClamAV) [1], acquired by Sourcefire, is

one of the most popular open-source antivirus applications. It is
mainly used in mail server of mid-size organizations to detect
malwares. We use ClamAV virus database for our recognized
pattern set. The database updated on 14 May 2009 has a total
of 545,035 patterns and there are 3 types of pattern: regular
expression, simple matching and MD5. 83.5% of those patterns
are MD5 and regular expression patterns. Ref. [7] stated that
the most consuming time in virus scanning process is simple
pattern matching task (73.4% of scan time), so we only concen-
trate on improving this task. There are 89,904 simple matching
patterns, the lengths of those patterns are distributed as in Fig.
1.a. Due to the limitation of memory capacity of FPGA Cyc-
lone II chip, we only carry out patterns of which length ranges
from 10 to 20 characters. The number of pattern in each length
is shown in Fig. 1.b.

B. Bloom Filter

The basic idea of Bloom Filter [8] is to use an index table to
check the existence of a given string in a pre-defined set. In-
itially, all entries in the 1-bit-array index table are set to '0'.
Each member of pre-defined set is then hashed to k positions in
the index table by k hash functions, entries corresponding with
those positions are set to '1'. This process is repeated until all
members of pre-defined set are hashed to index table.

Membership of a string is checked in similar method. At
first, that string is fed to k hash functions above to get k entries
in the index table. If one of these entries is '0', this string is not
member of the set, otherwise, the existence of this string in the
set is uncertain and further check is required. This uncertainty
is caused by "false positive" problem in hash-based system.
Probability of false positive depends on number of hash func-
tions (k), size of set (n) and length of index table (m). Equation
(1) is used to tune those variables to get desired false positive
probability.

 ݂ ൌ ൬1 െ ݁ି೙ೖ೘ ൰௞
 (1)

C. Bloomier Filter
In Bloom Filter’s worst case, the entire pre-defined set is

scanned to confirm the uncertain-match result from hashing
operation. [9] introduces better approach by using secondary
hash function and index table to reduce scope of scanning but it
still has to scan more than one pattern. This task consumes lots
of time because the patterns are usually stored in low speed
off-chip memory.

Bloomier Filter [10] is developed to solve this weakness. It
can show exactly which pattern in the set is the best match with
the searched string so the query time is constant. Bloomier
Filter’s algorithm is similar to Bloom Filter but its index table
is constructed in a different method. Instead of using one bit for
each index table entry, Bloomier Filter stores more information
in one entry, as a result, size of each entry depends on which
information is encoded. Because of this extra information,
Bloomier’s index table is built in a more complex way as com-
pared with Bloom Filter [11].

Equation (2) describes how to decode the encoded informa-
tion. Just as Bloom Filter, the searched string is hashed by k
hash functions resulted in k positions in the index table. Then,
all values of these positions are XORed together, at this stage,
the information is recovered.

III. SYSTEM ARCHITECTURE

A. Overview
Our BBF system in Fig. 2 includes a Character Scanning

Unit, a Comparison Unit and an Off-chip Memory to store
original patterns. There are 3 main components in Character
Scanning Unit: Standalone Hash Unit (SHU), Bloom –
Bloomier Unit (BBU) and On-chip Memory to store suspected
strings. If one of BBUs signals a match, the address of corre-
lated original pattern and current scanning string (suspected
string) are passed to Comparison Unit to determine whether
that string is identical with original pattern. When the exact
match is confirmed, our system reports this match together
with ID of the pattern.

To improve throughput, we organize SHUs and BBUs in pa-
rallel and pipeline structure as shown in Fig. 3. Each SHU or
BBU uses previous hash results from their preceding neighbor
and input character to calculate its own hash. This structure
allows us to scan multiple-length substrings at the same time
[12].

B. Character Scanning Unit
a. Bloom – Bloomier Filter

The advantage of Bloomier Filter over Bloom Filter in latter
stage of searching (compare the searched string with original
pattern) is also the biggest disadvantage when implemented in
our system. We have to access off-chip memory to do compari-
son for every searched string. At this point, Bloomier Filter is

b)

b). There are 2751 patterns which are 10-to-20 character long

0

100

200

300

400

500

600

700

800

10 11 12 13 14 15 16 17 18 19 20

Pa

tte
rn

Pattern's length

ܱܨܰܫ ൌ ٿ ሺ௞௜ୀଵܽݐܽܦ ሻሻ (2)݃݊݅ݎݐ௜ሺ݄ܵݏܽܪ

INFO: the actual information of Bloom – Bloomier Filter
Hashi(String): hash result of String
Data(Hashi(String)): data of entry in the index table at
position Hashi(String) ٿ : ݁ݐ݋݊݁݀ ݊ െ ݕݎܽ ௞௜ୀଵ݊݋݅ݐܽݎ݁݌݋ ܴܱܺ

a)

Figure 1. a). All pattern’s length distribution

0

3000

6000

9000

12000

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

>1
51

Pa

tte
rn

Pattern's length

worse than Bloom Filter which just performs comparison when
all of bits in hashed-positions are ‘1’.

Our solution is to combine Bloomier Filter with Bloom Fil-
ter in order to minimize the comparison process which requires
accessing to low-speed off-chip memory. We use one more bit
in the index table entry, called "Bloom bit" besides the
Bloomier encoded bits. This Bloom bit is not part of informa-
tion we want to encode in the entry as original Bloomier Filter.
All of the Bloom bits in index table act as an independent
Bloom Filter. We use this Bloom Filter to check whether the
query string may be in the set. If all of Bloom bits in hashed-
positions are ‘1’, we decode the information from Bloomier
encoded bits then start comparing the string.

Another problem with this structure is the limitation of
SRAM-based FPGA chips. k hash functions require k random
lookups to the memory (index table) in a single clock cycle,
whereas SRAM-based FPGA only supports 2 queries at a time.
To solve this problem, we break Bloomier bits into (k/2) parts,
encode them into (k/2) separated index tables. Hence k hash
functions are used, each pair of them corresponds to one index
table. Example 1 demonstrates the operation of Bloom –
Bloomier Filter.

Example 1:
• Stage 1: examine the Bloom Filter's results from (k/2)

index tables.
Given k = 4, we have 2 index tables. After hashing the

searched string, we get 4 entries in 2 index tables: A, B
from index table 1 and C, D from index table 2.

Suppose: A = 1101 bloom bit is: 1
 B = 1010 bloom bit is: 1
 C = 1100 bloom bit is: 1
 D = 1001 bloom bit is: 1
So the searched string maybe in set, go to stage 2.
• Stage 2: calculate (k/2) information parts.
part_1 = Bloomier(A) ^ Bloomier(B) = 101 ^ 010 = 111

part_2 = Bloomier(C) ^ Bloomier(D) = 100 ^ 001 = 101
• Stage 3: concatenate these parts together to form ac-

tual information.
Information = {part_1, part_2} = 111_101

b. Hash Function Consideration
Due to parallel and pipeline structure of Character Scanning

Unit, we choose Shift-add-xor (SAX) as system hash function
[3]. Additionally, the BBF will compare the searched string
with the original pattern from off-chip memory when there is a
match signal from BBUs, thus the encoded information in
index tables is the address of corresponding pattern in off-chip
memory.

The number of hash functions used in BBF has major impact
on system performance because it affects the false positive rate
of filter. High false positive rate means there will be more
suspected strings need to be checked, the overflow possibility
of BBU-FIFOs will also increase, when this happens, the sys-
tem will terminate and wait for the Comparison Unit to read
out BBU – FIFOs. The diagram in Fig. 4 shows the number of
hash functions and its correlative false positive rate. Base on
the quantity of implemented patterns and the Cyclone II FPGA

Figure 2. BBF System architecture overview

Figure 3. Parallel Character Scanning Units and Stream Window. The Stream
Window, which is a shift register, stores current (n+m) scanning characters.

Figure 4. The number of hash functions and its correlative false positive
rate. False positive rate drops dramatically with the increasing of hash
functions: from 83% (2 hash functions) to 0.02% (14 hash functions)

0

20

40

60

80

100

2 4 6 8 10 12 14Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

hash function

chip’s resources, we employ 10 hash functions for the filter.
Hence, there are 5 index tables, each index table is configured
to be 4-bit wide, which are 1 Bloom bit and 3 Bloomier bits.

c. Bloom – Bloomier Unit Structure
Fig. 5 is the structure of our Bloom – Bloomier Unit (BBU).

Hash Modules described in Fig. 6 performs hashing and index
table lookup operation, feeds result to Address Decoder to
determine whether a match may occur. The Address Decoder
will examine the “Bloom bit” in all index entries, if all are “1,”
current streaming window data will be saved to on-chip memo-
ry and the encoded address will be put into BBU-FIFO. This
information is used by Comparison Module to check the identi-
ty of the searched string with original pattern. The differences
between SHU and BBU are the omitted index table and Ad-
dress Decoder. SHU simply calculates its hash then feeds this
result to the next SHU or BBU.

C. Comparison Unit
Our Comparison Unit is composed of 2 parts: the Priority

FIFO Module and Comparator Module. We connect all output

data of BBU-FIFOs to a common bus and selectively fetch
BBU-FIFOs’ content to Priority FIFO. We follow the longest-
match-first policy to choose how BBU-FIFOs will be loaded.
As the result, the Priority FIFO module should load the BBU-
FIFOs in a round-trip longest to shortest substring order.

Comparator Module reads data from Priority FIFO, uses this
information to compare original pattern from off-chip memory
and corresponding suspected string from on-chip memory.
Whenever an exact match is detected, the comparator will
report the pattern’s ID, terminate the system till the next stream
arrives.

D. Database update

Our system mostly relies on memory: on-chip memory
stores index tables and off-chip memory stores original patterns
content, thus it can be updated quite easily without having to
reconfigure entire system. To remove a pattern out of database,
we simply change the value of pointer in off-chip memory to
null, when the Comparator notices this invalid value, it drops
current suspected string, proceeds to examine the next string.
Adding new patterns is not easy as removing. The software
running on PC has to re-construct the index table then transmit
new index table’s value via Communication Module in BBF
system to replace old index table.

IV. FPGA IMPLEMENTATION RESULTS

Our system is implemented on the Altera DE2 Development

and Education board. The FPGA chip in DE2 is Cyclone II
EP2C35F672C6. We use Quartus II 9.1 Web Edition for hard-
ware synthesis, mapping, placing and routing.

As mentioned above, we only implement the patterns of
lengths from 10 to 20 characters. There are 2751 patterns with
total of 43,951 characters in this range. Because of the limita-
tion of low-cost FPGA chip and of synthesis tool, our system
can only operate at 128 MHz (1Gbps). Table 1 is the list of
hardware consumption for all components in the system which
consists of 9 SHUs, 11 BBUs with their index tables and FIFO,
Comparator Module, Priority FIFO and on-chip memory to
save suspected strings. Our system also uses 54.5 kilobytes
available off-chip memory on DE2 board to store all original
patterns. Therefore, our system does not require many hard-
ware resources and fit easily in low-cost Altera Cyclone II
FPGA chip. Table 2 shows the comparison of our system with
previous systems in on-chip memory usage.

V. CONCLUSIONS AND FUTURE WORK

Our system is an effective solution to accelerate the perfor-
mance of pattern matching in ClamAV. The first novel aspect

Figure 5. Bloom – Bloomier Unit (BBU). It consists of 5
Hash Modules, an Address Decoder and a BBU-FIFO.

Figure 6. Hash Module in BBU. It uses previous hash results from
preceding Hash Module and current character.

of this system is the combination of Bloom Filter and Bloomier
Filter to minimize the off-chip memory access times for exact
pattern comparison. Another enhancement is the usage of ten
SAX hash functions to reduce the false positive probability.

In near future, our system will support all ClamAV simple
patterns and some kinds of wildcard. We also intend to create a
system called Hybrid Antivirus Solution, which is a combina-
tion of hardware and software to take full advantage of high-
speed FPGA-based system as well as flexibility of PC applica-
tion. An anti-virus application running on PC uses some heuris-
tic algorithms to discover unknown viruses while FPGA-based
system scans the file stream in order to detect known viruses
by their signatures.

REFERENCES

[1] ClamAV official website, “http://www.clamav.net.”
[2] I. Sourdis, D. Pnevmatikatos, S. Wong and S. Vassiliadis, “A reconfi-

gurable perfect-hashing scheme for packet inspection,” Proc. Interna-
tional Conference FPL, 2005, 644-647.

[3] T. N. Thinh, S. Kittitornkun and S. Tomiyama, “Applying cuckoo
hashing for FPGA-based pattern matching in NIDS/NIPS,” ICFPT
2007, 2007, 121-128.

[4] J. van Lunteren, “High-performance pattern-matching for intrusion
detection,” IEEE Int’l. Conf. on Comp. Comm., 2006, 1-13.

[5] G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory = low
cost, exact pattern matching,” Proc. International Conference FPL,
2005.

[6] Tran Ngoc Thinh, Surin Kittitornkun, “Systolic Array for String
Matching in NIDS,” 4th IASTED Asian Conference Communication
System and Networks, April 2-4, 2007.

[7] Xin Zhou, Bo Xu, Yaxuan Qi and Jun Li, “MRSI: A Fast Pattern
Matching Algorithm for Anti-Virus Applications,” Seventh Interna-
tional Conference on Networking, pp.256-261.

[8] B.Bloom, “Space/Time Tradeoffs in Hash Coding with Allowance
Errors,” Comm., ACM, vol. 13, no. 7, May 1970, p.422-426.

[9] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, John Lock-
wood, “Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing,” ACM SIGCOMM, vol. 35, no. 4, Octo-
ber 2005, p.181-192.

[10] Bernard Chazelle, Joe Kilian, Ronitt Robinfeld, Ayellet Tal, “The
Bloomier Filter: an Efficient Data Structure for Static Support Lookup
Table,” Society for Industrial and Applied Mathematics, 2004, p.30-
39.

[11] J. Hasan, S. Cadambi, V. Jakkula and S. Chakradhar, “Chisel: A
Storage-efficient, Collision-free Hash-based Network Processing Ar-
chitecture,” 33rd International Symposium on Computer Architecture,
p.203-215.

[12] S. Dharmapurikar, P. Krishnamurthy, T. Sproull and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” Micro IEEE,
vol. 24, no. 1, January 2004, p.52-61.

TABLE 1
LOGIC AND MEMORY COST ON CYCLONE II EP2C35F672C6

Component Quantity
Block
RAMs
M4K

Logic
Elements

Note

SHU

9
 0 4,140 Standalone Hash Unit

BBU 11 0 5,401
Bloom – Bloomier

Unit

Index table 55 85 0
Each BBU has 5 index

tables

BBU-FIFO 11 11 2,244 Each BBU has 1 FIFO

Priority
FIFO

1 1 204
Implemented in Com-

parison Unit
On-chip
memory

1 5 0
Stores suspected

strings
Comparator

Module
1 0 507

Total 102 11,989

TABLE 2
ON-CHIP MEMORY DENSITY COMPARISON

System
Number of

Chars
Memory
(Kbits)

Bits per
Char

Our system 43,951 417 9.5

PH-Mem [2] 20,911 288 14.1

Cuckoo Hashing [3] 68,266 1,116 16.7

B-FSM [4] 25,200 656 26.4

HashMem [5] 18,636 630 34.6

