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Abstract-In this paper, we propose a high performance archi-
tecture based on the combination of Bloom Filter and Bloomier 
Filter (BBF) to enhance the speed of pattern matching process on 
Clam Antivirus (ClamAV) database. BBF maintains small on-chip 
memory, low number of fault positives and can indicate which 
patterns are the candidate matches. The implementation results 
on low-cost Altera Cyclone II show that our architecture can 
handle 43,491-characters of ClamAV pattern set with only 9.5 bits 
per character and achieve a throughput of 1 gigabit per second 
(Gbps). As compared with previous systems, our memory utiliza-
tion is far better up to 73%. 

I.  INTRODUCTION 

Nowadays, along with the development of internet, informa-
tion security is becoming more and more critical. One of the 
most important aspects in this field is antivirus. Although there 
are many improvements in antivirus programs, they still have 
to match a file stream with static patterns of known viruses. 
This process occupies a noticeable amount of resource and 
slows down entire system due to the growing number of virus-
es. In addition, software-based solution can not catch up with 
the gigabit networks.  

This limitation leads to a demand of hardware solution to 
speed up this process. FPGA-based system is one of popular 
hardware technologies because of its high speed operation and 
flexibility in changing application. There are many FPGA-
based solutions have been developed in this field, but those 
systems [2, 3, 4, 5] need quite large on-chip memory to operate 
(14.1 – 34.6 bits per character) or consume lots of logic ele-
ments [6], up to 1.12 logic elements per character. Our Bloom-
Bloomier Filter (BBF) is a flexible, storage-efficient FPGA-
based system that boosts the speed of pattern matching. The 
BBF relies on hash-based Bloom Filter and Bloomier Filter 
algorithm, thus the usage of logic element (currently 0.27 logic 
elements per character) is independent of the quantity of im-
plemented patterns. We use up to ten hash functions to de-
crease the false positive probability as well as the off-chip 
memory access rate. The on-chip memory density of BBF is 

only 9.5 bits per character not as much as previous systems of 
which on-chip memory density are 14.1 to 34.6 bits per charac-
ter. 

This paper is organized into 5 sections. ClamAV Database, 
Bloom Filter and Bloomier Filter are introduced in Section 2. 
Section 3 describes the combination of Bloom and Bloomier 
Filter as well as the architecture of BBF system. Synthesis and 
simulation results are presented in Section 4. Finally, conclu-
sions and future work are given in Section 5. 

 
II.  BACKGROUND 

A.  Clam Antivirus Database 
Clam Antivirus (ClamAV) [1], acquired by Sourcefire, is 

one of the most popular open-source antivirus applications. It is 
mainly used in mail server of mid-size organizations to detect 
malwares. We use ClamAV virus database for our recognized 
pattern set. The database updated on 14 May 2009 has a total 
of 545,035 patterns and there are 3 types of pattern: regular 
expression, simple matching and MD5. 83.5% of those patterns 
are MD5 and regular expression patterns. Ref. [7] stated that 
the most consuming time in virus scanning process is simple 
pattern matching task (73.4% of scan time), so we only concen-
trate on improving this task. There are 89,904 simple matching 
patterns, the lengths of those patterns are distributed as in Fig. 
1.a. Due to the limitation of memory capacity of FPGA Cyc-
lone II chip, we only carry out patterns of which length ranges 
from 10 to 20 characters. The number of pattern in each length 
is shown in Fig. 1.b. 

 
B.  Bloom Filter 

The basic idea of Bloom Filter [8] is to use an index table to 
check the existence of a given string in a pre-defined set. In-
itially, all entries in the 1-bit-array index table are set to '0'. 
Each member of pre-defined set is then hashed to k positions in 
the index table by k hash functions, entries corresponding with 
those positions are set to '1'. This process is repeated until all 
members of pre-defined set are hashed to index table.  



Membership of a string is checked in similar method. At 
first, that string is fed to k hash functions above to get k entries 
in the index table. If one of these entries is '0', this string is not 
member of the set, otherwise, the existence of this string in the 
set is uncertain and further check is required. This uncertainty 
is caused by "false positive" problem in hash-based system. 
Probability of false positive depends on number of hash func-
tions (k), size of set (n) and length of index table (m).  Equation 
(1) is used to tune those variables to get desired false positive 
probability. 

 ݂ ൌ ൬1 െ ݁ି೙ೖ೘ ൰௞
 (1) 

C.  Bloomier Filter 
In Bloom Filter’s worst case, the entire pre-defined set is 

scanned to confirm the uncertain-match result from hashing 
operation. [9] introduces better approach by using secondary 
hash function and index table to reduce scope of scanning but it 
still has to scan more than one pattern. This task consumes lots 
of time because the patterns are usually stored in low speed 
off-chip memory.  

Bloomier Filter [10] is developed to solve this weakness. It 
can show exactly which pattern in the set is the best match with 
the searched string so the query time is constant. Bloomier 
Filter’s algorithm is similar to Bloom Filter but its index table 
is constructed in a different method. Instead of using one bit for 
each index table entry, Bloomier Filter stores more information 
in one entry, as a result, size of each entry depends on which 
information is encoded. Because of this extra information, 
Bloomier’s index table is built in a more complex way as com-
pared with Bloom Filter [11]. 

Equation (2) describes how to decode the encoded informa-
tion. Just as Bloom Filter, the searched string is hashed by k 
hash functions resulted in k positions in the index table. Then, 
all values of these positions are XORed together, at this stage, 
the information is recovered. 

III.  SYSTEM ARCHITECTURE 

A.  Overview 
Our BBF system in Fig. 2 includes a Character Scanning 

Unit, a Comparison Unit and an Off-chip Memory to store 
original patterns. There are 3 main components in Character 
Scanning Unit: Standalone Hash Unit (SHU), Bloom – 
Bloomier Unit (BBU) and On-chip Memory to store suspected 
strings. If one of BBUs signals a match, the address of corre-
lated original pattern and current scanning string (suspected 
string) are passed to Comparison Unit to determine whether 
that string is identical with original pattern. When the exact 
match is confirmed, our system reports this match together 
with ID of the pattern. 

To improve throughput, we organize SHUs and BBUs in pa-
rallel and pipeline structure as shown in Fig. 3. Each SHU or 
BBU uses previous hash results from their preceding neighbor 
and input character to calculate its own hash. This structure 
allows us to scan multiple-length substrings at the same time 
[12]. 

 

B.  Character Scanning Unit 
a.  Bloom – Bloomier Filter  

The advantage of Bloomier Filter over Bloom Filter in latter 
stage of searching (compare the searched string with original 
pattern) is also the biggest disadvantage when implemented in 
our system. We have to access off-chip memory to do compari-
son for every searched string. At this point, Bloomier Filter is 

 
b) 

b). There are 2751 patterns which are 10-to-20 character long 
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a) 

Figure 1. a). All pattern’s length distribution 
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worse than Bloom Filter which just performs comparison when 
all of bits in hashed-positions are ‘1’. 

Our solution is to combine Bloomier Filter with Bloom Fil-
ter in order to minimize the comparison process which requires 
accessing to low-speed off-chip memory. We use one more bit 
in the index table entry, called "Bloom bit" besides the 
Bloomier encoded bits. This Bloom bit is not part of informa-
tion we want to encode in the entry as original Bloomier Filter. 
All of the Bloom bits in index table act as an independent 
Bloom Filter. We use this Bloom Filter to check whether the 
query string may be in the set. If all of Bloom bits in hashed-
positions are ‘1’, we decode the information from Bloomier 
encoded bits then start comparing the string.  

Another problem with this structure is the limitation of 
SRAM-based FPGA chips. k hash functions require k random 
lookups to the memory (index table) in a single clock cycle, 
whereas SRAM-based FPGA only supports 2 queries at a time. 
To solve this problem, we break Bloomier bits into (k/2) parts, 
encode them into (k/2) separated index tables. Hence k hash 
functions are used, each pair of them corresponds to one index 
table. Example 1 demonstrates the operation of Bloom – 
Bloomier Filter. 

Example 1: 
• Stage 1: examine the Bloom Filter's results from (k/2) 

index tables. 
Given k = 4, we have 2 index tables. After hashing the 

searched string, we get 4 entries in 2 index tables: A, B 
from index table 1 and C, D from index table 2. 

Suppose:  A = 1101  bloom bit is: 1 
 B = 1010   bloom bit is: 1 
 C = 1100   bloom bit is: 1 
 D = 1001   bloom bit is: 1 
So the searched string maybe in set, go to stage 2. 
• Stage 2: calculate (k/2) information parts. 
part_1 = Bloomier(A) ^ Bloomier(B) = 101 ^ 010 = 111 

part_2 = Bloomier(C) ^ Bloomier(D) = 100 ^ 001 = 101 
• Stage 3: concatenate these parts together to form ac-

tual information. 
Information = {part_1, part_2} = 111_101 

b.  Hash Function Consideration 
Due to parallel and pipeline structure of Character Scanning 

Unit, we choose Shift-add-xor (SAX) as system hash function 
[3]. Additionally, the BBF will compare the searched string 
with the original pattern from off-chip memory when there is a 
match signal from BBUs, thus the encoded information in 
index tables is the address of corresponding pattern in off-chip 
memory. 

The number of hash functions used in BBF has major impact 
on system performance because it affects the false positive rate 
of filter. High false positive rate means there will be more 
suspected strings need to be checked, the overflow possibility 
of BBU-FIFOs will also increase, when this happens, the sys-
tem will terminate and wait for the Comparison Unit to read 
out BBU – FIFOs. The diagram in Fig. 4 shows the number of 
hash functions and its correlative false positive rate. Base on 
the quantity of implemented patterns and the Cyclone II FPGA 

 

Figure 2. BBF System architecture overview 

 

 
Figure 3.  Parallel Character Scanning Units and Stream Window. The Stream 
Window, which is a shift register, stores current (n+m) scanning characters. 

 

 

Figure 4. The number of hash functions and its correlative false positive 
rate. False positive rate drops dramatically with the increasing of hash 
functions: from 83% (2 hash functions) to 0.02% (14 hash functions) 
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chip’s resources, we employ 10 hash functions for the filter. 
Hence, there are 5 index tables, each index table is configured 
to be 4-bit wide, which are 1 Bloom bit and 3 Bloomier bits. 

c.  Bloom – Bloomier Unit Structure 
Fig. 5 is the structure of our Bloom – Bloomier Unit (BBU). 

Hash Modules described in Fig. 6 performs hashing and index 
table lookup operation, feeds result to Address Decoder to 
determine whether a match may occur. The Address Decoder 
will examine the “Bloom bit” in all index entries, if all are “1,” 
current streaming window data will be saved to on-chip memo-
ry and the encoded address will be put into BBU-FIFO. This 
information is used by Comparison Module to check the identi-
ty of the searched string with original pattern. The differences 
between SHU and BBU are the omitted index table and Ad-
dress Decoder. SHU simply calculates its hash then feeds this 
result to the next SHU or BBU. 

C.  Comparison Unit 
Our Comparison Unit is composed of 2 parts: the Priority 

FIFO Module and Comparator Module. We connect all output 

data of BBU-FIFOs to a common bus and selectively fetch 
BBU-FIFOs’ content to Priority FIFO. We follow the longest-
match-first policy to choose how BBU-FIFOs will be loaded. 
As the result, the Priority FIFO module should load the BBU-
FIFOs in a round-trip longest to shortest substring order. 

Comparator Module reads data from Priority FIFO, uses this 
information to compare original pattern from off-chip memory 
and corresponding suspected string from on-chip memory. 
Whenever an exact match is detected, the comparator will 
report the pattern’s ID, terminate the system till the next stream 
arrives. 

 
D.  Database update 

Our system mostly relies on memory: on-chip memory 
stores index tables and off-chip memory stores original patterns 
content, thus it can be updated quite easily without having to 
reconfigure entire system. To remove a pattern out of database, 
we simply change the value of pointer in off-chip memory to 
null, when the Comparator notices this invalid value, it drops 
current suspected string, proceeds to examine the next string. 
Adding new patterns is not easy as removing. The software 
running on PC has to re-construct the index table then transmit 
new index table’s value via Communication Module in BBF 
system to replace old index table. 

 
IV.  FPGA IMPLEMENTATION RESULTS 

 
Our system is implemented on the Altera DE2 Development 

and Education board. The FPGA chip in DE2 is Cyclone II 
EP2C35F672C6. We use Quartus II 9.1 Web Edition for hard-
ware synthesis, mapping, placing and routing.  

As mentioned above, we only implement the patterns of 
lengths from 10 to 20 characters. There are 2751 patterns with 
total of 43,951 characters in this range. Because of the limita-
tion of low-cost FPGA chip and of synthesis tool, our system 
can only operate at 128 MHz (1Gbps). Table 1 is the list of 
hardware consumption for all components in the system which 
consists of 9 SHUs, 11 BBUs with their index tables and FIFO, 
Comparator Module, Priority FIFO and on-chip memory to 
save suspected strings. Our system also uses 54.5 kilobytes 
available off-chip memory on DE2 board to store all original 
patterns. Therefore, our system does not require many hard-
ware resources and fit easily in low-cost Altera Cyclone II 
FPGA chip. Table 2 shows the comparison of our system with 
previous systems in on-chip memory usage.   

 
V.  CONCLUSIONS AND FUTURE WORK 

 
Our system is an effective solution to accelerate the perfor-
mance of pattern matching in ClamAV. The first novel aspect 

 
 

Figure 5. Bloom – Bloomier Unit (BBU). It consists of 5 
Hash Modules, an Address Decoder and a BBU-FIFO. 

 

Figure 6.  Hash Module in BBU. It uses previous hash results from 
preceding Hash Module and current character.  

 



of this system is the combination of Bloom Filter and Bloomier 
Filter to minimize the off-chip memory access times for exact 
pattern comparison. Another enhancement is the usage of ten 
SAX hash functions to reduce the false positive probability.  

In near future, our system will support all ClamAV simple 
patterns and some kinds of wildcard. We also intend to create a 
system called Hybrid Antivirus Solution, which is a combina-
tion of hardware and software to take full advantage of high-
speed FPGA-based system as well as flexibility of PC applica-
tion. An anti-virus application running on PC uses some heuris-
tic algorithms to discover unknown viruses while FPGA-based 
system scans the file stream in order to detect known viruses 
by their signatures. 
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TABLE 1 
LOGIC AND MEMORY COST ON CYCLONE II EP2C35F672C6 

Component Quantity 
Block 
RAMs 
M4K 

Logic 
Elements 

Note 

SHU 
 

9 
 0  4,140 Standalone Hash Unit 

BBU 11  0  5,401 
Bloom – Bloomier 

Unit 

Index table 55  85  0 
Each BBU has 5 index 

tables 

BBU-FIFO 11  11  2,244 Each BBU has 1 FIFO 

Priority 
FIFO 

1  1  204 
Implemented in Com-

parison Unit 
On-chip 
memory 

1  5  0 
Stores suspected 

strings 
Comparator 

Module 
1  0  507  

Total   102   11,989  

 

TABLE 2  
ON-CHIP MEMORY DENSITY COMPARISON 

System 
Number of 

Chars 
Memory 
(Kbits) 

Bits per 
Char 

Our system 43,951  417 9.5 

PH-Mem [2] 20,911  288 14.1 

Cuckoo Hashing [3] 68,266 1,116 16.7 

B-FSM [4] 25,200  656 26.4 

HashMem [5] 18,636  630 34.6 

 


